Integrability, degenerate centers, and limit cycles for a class of polynomial differential systems
نویسندگان
چکیده
We consider the class of polynomial differential equations ẋ = Pn(x, y)+Pn+1(x, y) +Pn+2(x, y), ẏ = Qn(x, y)+Qn+1(x, y)+Qn+2(x, y), for n ≥ 1 and where Pi and Qi are homogeneous polynomials of degree i. These systems have a linearly zero singular point at the origin if n ≥ 2. Inside this class we identify a new subclass of Darboux integrable systems, and some of them having a degenerate center, i.e., a center with linear part identically zero. Moreover, under additional conditions such Darboux integrable systems can have at most 1 limit cycle. We provide the explicit expression of this limit cycle.
منابع مشابه
Relationships between Darboux Integrability and Limit Cycles for a Class of Able Equations
We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.
متن کاملCenters and limit cycles of polynomial differential systems of degree 4 via averaging theory
In this paper we classify the phase portraits in the Poincaré disc of the centers of the generalized class of Kukles systems ẋ = −y, ẏ = x+ axy + bxy, symmetric with respect to the y-axis, and we study, using the averaging theory up to sixth order, the limit cycles which bifurcate from the periodic solutions of these centers when we perturb them inside the class of all polynomial differential s...
متن کاملLimit cycles bifurcating from the periodic annulus of the weight-homogeneous polynomial centers of weight-degree 2
We obtain an explicit polynomial whose simple positive real roots provide the limit cycles which bifurcate from the periodic orbits of a family of cubic polynomial differential centers when it is perturbed inside the class of all cubic polynomial differential systems. The family considered is the unique family of weight–homogeneous polynomial differential systems of weight–degree 2 with a center.
متن کاملRelationships between Darboux Integrability and Limit Cycles for a Class of Able Equations
We consider the class of polynomial differential equation x = 2 ( , ) ( , ) ( , ) n n m n m P x y P x y P x y + + + + , 2 ( , ) ( , ) ( , ) n n m n m y Q x y Q x y Q x y + + = + + . For , 1 m n ≥ where i P and i Q are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditi...
متن کاملBifurcation of limit cycles at degenerate singular point and in“nity in a septic system
In this paper, the problem of bifurcation of limit cycles from degenerate singular point and infinity in a class of septic polynomial differential systems is investigated. Using the computer algebra system Mathematica, the limit cycle configurations of {(8), 3} and {(3), 6} are obtained under synchronous perturbation at degenerate singular point and infinity. To our knowledge, up to now, this i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Mathematics with Applications
دوره 51 شماره
صفحات -
تاریخ انتشار 2006